2017/SEM/EVEN/ECOH-203 (A/B)/204

TDC Even Semester Exam., 2017

ECONOMICS

(Honours)

(2nd Semester)

Course No : ECOH-203

Full Marks: 50 Pass Marks: 17

Time: 2 hours

The figures in the margin indicate full marks for the questions

Arts students will answer ECOH-203 (A) and Science students will answer ECOH-203 (B)

(For Arts Students)

Course No : ECOH-203 (A)

(MATHEMATICS FOR ECONOMICS—II)

Answer five questions, taking one from each Unit

UNIT-I

- 1. Find the complementary function, the particular integral and general solution of the following:

 5+5=10
 - (a) $2 \cdot \frac{dy}{dx} + 10y = 15$; y(0) = 0
 - (b) $\frac{dy}{dx} 7y = 7$, y(0) = 7

J7/1124

(Turn Over)

The demand and supply functions are given as follows:

$$Q_d = \alpha - \beta p; (\alpha, \beta) > 0$$
and $Q_s = -\gamma + \delta p; (\gamma, \delta) > 0$
moreover $\frac{dp}{dt} = \theta(Q_d - Q_s); \theta > 0$

- (a) Find the time path of price.
- condition for dynamic (b) Obtain the 6+4=10stability.

UNIT-II

3. The total cost function of a firm is

$$C = \frac{1}{3} Q^3 - 3Q^2 + 9Q$$

At what output level is average cost minimum? What is the value of marginal cost at this point? 5+5=10

4. The demand function in a market for a particular good is

$$Q_d = \frac{20}{p+1}$$

Find the price elasticity of demand at p=3and p=5. Explain the nature of these (4+4)+2=10

J7/1124

(Continued)

UNIT-III

5. (a) Use the principle of cost minimization to derive the equation of the expansion path for the production function

$$Q = AK^{\alpha} \cdot L^{1-\alpha}$$
with $A > 0$, $0 < \alpha < 1$

(i)
$$Q = 0.68 \cdot K^{0.53} \cdot L^{0.36}$$

(ii)
$$Q = K^{\alpha} \cdot L^{1-\alpha} + \alpha \cdot K + (1-\alpha) \cdot L$$

(iii)
$$Q = K^{0.64} \cdot L^{0.36}$$

o. Write a note on Eugel curve. Elaborate how you would plot an Eugel curve, given the utility function of a consumer, her budget and prices of two commodities.

UNIT-IV

7. Given the technical coefficient matrix

$$A = \begin{bmatrix} 0.1 & 0.3 & 0.1 \\ 0 & 0.2 & 0.2 \\ 0 & 0 & 0.3 \end{bmatrix}$$

and final demands F_1 , F_2 and F_3 . Find the output levels consistent with the model.

10

8. Given the input-output coefficient matrix

A =
$$\begin{bmatrix} 1/8 & 1/3 & 1/4 \\ 1/2 & 1/6 & 1/4 \\ 1/4 & 1/6 & 1/4 \end{bmatrix}$$

and final demand vector

Find the total output of the three sectors.

10

UNIT-V

9. Find the demand vector D which is consistent with the output vector

$$X = \begin{bmatrix} 25 \\ 21 \\ 18 \end{bmatrix}$$

when the input-output coefficient matrix is

$$A = \begin{bmatrix} 0.2 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 \end{bmatrix}$$

10. (a) How does the closed Leontief input-output system differ from the open system? Elaborate.

(b) Point out the limitations of input-output

J7/1124

(Continued)

10

5

(For Science Students)

Course No: ECOH-203 (B)

(ELEMENTS OF MATHEMATICAL ECONOMICS—II

Answer five questions, taking one from each Unit

UNIT-I

1. (a) Consider a game with the following pay-off matrix:

- (i) Show that the game is strictly determinable, whatever λ may be.
- (ii) Determine the value of the game.
- (b) Solve the game whose pay-off matrix is given by

(Turn Over)

2. (a) Determine the optimum strategies for the two players X and Y and find the value of the game from the following pay-off matrix:

(b) Discuss the uses and limitations of game
5+5=10

UNIT-II

3. Given

$$A = \begin{bmatrix} 0.1 & 0.3 & 0.1 \\ 0 & 0.2 & 0.2 \\ 0 & 0.0 & 0.3 \end{bmatrix}$$

and final demands are F_1 , F_2 and F_3 .

- (a) Find the output levels consistent with the model.
- (b) What will be the output levels if $F_1 = 20$, $F_2 = 0$ and $F_3 = 100$?
- (c) Check the Hawkins-Simon condition.

5+3+2=10

(Continued)

J7/1124

4. Suppose three industries are producing three commodities P, Q and R with the given follows:

$$A = \begin{bmatrix} 0.3 & 0.5 & 0.2 \\ 0.2 & 0 & 0.5 \\ 0.1 & 0.3 & 0.1 \end{bmatrix}$$

and
$$F = \begin{bmatrix} 100 \\ 40 \\ 50 \end{bmatrix}$$

What will be the output levels?

- ing mys
- (b) Check the Hawkins-Simon condition.

UNIT-III

5. (a) Write a short note on Leontief's dynamic model of input-output analysis.

- (b) What are the assumptions of this model?
 7+3=10
- 6. Write short notes on the following: 5+5=10
- (a) Significant limitations of the input-output model
 - (b) Dynamic input-output model

(Turn Over)

7+3=10

7/1124

- UNIT-IVOLEGE ACIT (a) What is linear programming?
 - A manufacturer makes two products x_1 and x_2 . The first product requires 5 (b) hours for processing, 3 hours for assembling and 4 hours for packaging. The 2nd product requires 2 hours for processing, 12 hours for assembling and 48 hours of packaging. The profit margin for x_1 is 7.00 and for x_2 is 21.00. Express the data in linear programming problem having objective function and 5+5=10constraints.
- 8. (a) Define feasible, basic and basic feasible solutions of linear programming problem.
 - Graphically solve the following linear programming problem:

Maximize $\pi = 10x_1 + 8x_2$ subject to

$$6x_1 + 2x_2 \le 36$$

$$3x_1 + 5x_2 \le 30$$

$$x_1 + 4x_2 \le 30$$

$$x_1 + 4x_2 \le 20$$

$$x_1, x_2 \ge 0$$

$$(2+2+2)+4=10$$

UNIT-V

- 9. (a) Give some examples of application of
- (b) What is primal and dual problems in 17/1124 5+5=10

(Continued)

